Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice.

نویسندگان

  • Shingo Watanabe
  • Masahiro Tsuda
  • Tomohiro Terada
  • Toshiya Katsura
  • Ken-Ichi Inui
چکیده

Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates the transport of not only organic cations but also zwitterions such as cephalexin. However, the contribution of MATE1 to tubular secretion of cephalexin in vivo has not been elucidated. In the present study, we carried out transport experiments of cephalexin via MATE1 and performed pharmacokinetic analyses of cephalexin in Mate1 knockout [Mate1(-/-)] mice. Cephalexin uptake by human MATE1-expressing human embryonic kidney 293 cells exhibited saturable kinetics (K(m) = 5.9 +/- 0.5 mM) and a bell-shaped pH profile with a maximum at pH 7.0. We confirmed that mouse MATE1 also transported cephalexin. After a single intravenous administration of cephalexin (5 mg/kg), Mate1(-/-) mice showed higher plasma concentrations of cephalexin than wild-type [Mate1(+/+)] mice. The urinary excretion of cephalexin for 60 min was significantly reduced, and the renal concentration was markedly increased in Mate1(-/-) mice compared with Mate1(+/+) mice. The renal clearance of cephalexin in Mate1(-/-) mice was approximately 60% of that in Mate1(+/+) mice and seemed to be near the creatinine clearance. In contrast, there were no significant differences between both mice in the pharmacokinetics of anionic cefazolin, which is not a substrate for MATE1. In this study, we demonstrated that MATE1 is responsible for renal tubular secretion of a zwitterionic substrate cephalexin in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin.

Multidrug and toxin extrusion 1 (MATE1/SLC47A1) is important for excretion of organic cations in the kidney and liver, where it is located on the luminal side. Although its functional and regulatory characteristics have been clarified, its pharmacokinetic roles in vivo have yet to be elucidated. In the present study, to clarify the relevance of MATE1 in vivo, targeted disruption of the murine M...

متن کامل

Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney.

Cimetidine, an H₂ receptor antagonist, has been used to investigate the tubular secretion of organic cations in human kidney. We report a systematic comprehensive analysis of the inhibition potency of cimetidine for the influx and efflux transporters of organic cations [human organic cation transporter 1 (hOCT1) and hOCT2 and human multidrug and toxin extrusion 1 (hMATE1) and hMATE2-K, respecti...

متن کامل

Deficiency of Multidrug and Toxin Extrusion 1 Enhances Renal Accumulation of Paraquat and Deteriorates Kidney Injury in Mice

Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates cellular transport of a variety of structurally diverse compounds. Paraquat (PQ), which has been characterized in vitro as a MATE1 substrate, is a widely used herbicide and can cause severe toxicity to humans after exposure. However, the contribution of MATE1 to PQ disposition in vivo has not been determined. In the present st...

متن کامل

Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity.

Multidrug and toxin extrusion 1 (MATE1/SLC47A1) is expressed in the brush-border membrane of renal proximal tubules and mediates the efflux of cationic drugs. In the present study, the role of MATE1 in the nephrotoxicity of cisplatin was investigated in vivo and in vitro. Cisplatin (15mg/kg) was administered intraperitoneally to wild-type (Mate1(+/+)) and Mate1 knockout (Mate1(-/-)) mice. Lifes...

متن کامل

Pregnancy Increases the Renal Secretion of N1-methylnicotinamide, an Endogenous Probe for Renal Cation Transporters, in Patients Prescribed Metformin.

N1-methylnicotinamide (1-NMN) has been investigated as an endogenous probe for the renal transporter activity of organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins 1 and 2-K (MATE1 and MATE2-K). As pregnancy increased the renal secretion of metformin, a substrate for OCT2, MATE1, and MATE2-K, we hypothesized that the renal secretion of 1-NMN would be similarly affect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 334 2  شماره 

صفحات  -

تاریخ انتشار 2010